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Iteration and Accelerator Dynamics

S. Peggs
SSC Central Design Group,
1 Cyclotron Road, Berkeley, CA 94720

"The Mersenne prime problem was a highly artificial, if ingenious,
application of the growing Manchester computer. Only from the autumn
of 1949 could it be applied to 'regular’ problems. Besides those of Alan
Turing himself, ... , it was used for optical calculations, tracking rays
through systems of lenses, and for some mathematical work in connection
with guided missiles.”[1]

"If the only tool you have is a hammer, all your problems look like
nails."(2]

Introduction

Computers have been used to model physical systems from their earliest
days. The behavior of these models is subtly but profoundly affected by the sequential
and discrete nature of all digital computers, in which one step in an algorithm follows
another, just as machine cycle follows machine cycle. Analytic tools make problems
look like differential equations, while numerical tools make them look like difference
equations. Which representation is more appropriate depends on the nature of the
system itself, and on the questions which need to be answered - some physical
systems are inherently continuous, and some, like accelerators, are inherently discrete.

For example, the motion of a pendulum swinging under the continuous
influence of gravity is exactly described by a differential equation. The numerical
representation breaks the motion into two steps, which are iterated. In the first step
the pendulum 'drifts' with a constant angular velocity for a time At, and in the second
step the action of gravity is approximated by an impulsive 'kick' which changes the
angular velocity. This numerical model more naturally describes the longitudinal
oscillations of a test particle, relative to the center of its own bunch, which encounters
a single short radio frequency cavity once per turn of an accelerator.

It is often faster and easier to answer questions about a physical system by
writing a short program containing an approximate numerical model, even if the



system is inherently continuous. Take the case of a charged particle injected at rest
into the periphery of a radially symmetric betatron. The purely vertical magnetic field
increases uniformly from a non-zero value at injection time, inducing concentric
horizontal electric fields which accelerate the particle. What does the particle do?
Trying to solve this "simple” problem using both approaches is an illuminating
exercise.

With luck, it is possible to find the analytic solution to differential equations -
although even the pendulum problem becomes non-trivial when finite angle oscillations
are considered. It is much rarer to solve non-trivial difference equations analytically.
This is the main reason that traditional mathematical methods are almost all implicitly
continuous, and that iteration only began to be used extensively with the advent of the
computer. In some cases traditional methods of analysis break down more or less
completely, and numerical techniques are not just advantageous, but essential. For
example, Hamiltonian analyses of particle dynamics are usually insufficient to
determine the stable aperture of an accelerator accurately enough. Instead, particles
must be numerically tracked around a machine.

Some iterative algorithms have been around for a long time. The best known
example is probably the Newton search method for solving the equation f(x) =0

X = guess
until converged  { (1)
f(x)
X - f .(X)
}

where f '(x) is the differential of the function. The following algorithm, based on
Newtons method, has been used for centuries to find the square root of y in the absence
of calculators and tables of logarithms

x =1
until converged | (2)
- A
x = (x+ x Y/ 2
}

This algorithm converges remarkably rapidly - the square root of 10 is correct to 10
decimal places after only 6 iterations - leading to its continued use in the mathematical
library functions installed on computers. Good algorithms die hard.

A common problem with Newton searches is that the initial guess must be
close enough to the right answer for the solution to converge. Pan and Reif recently



(1985) rediscovered the result of Ben-Israel (1966) that the initial guess in the
algorithm

X =Y /[ max; Zj1A5] . maxj ZilA;! ]

until converged { (3)
X=X 4+ X(I-XY)

}

for inverting the matrix Y guarantees convergence[3-6]. Here Y is the transpose of
Y, and I is the identity matrix. The most difficult requirement of the algorithm, which
again is based on a Newton search, is that the user be able to multiply matrices. This
algorithm is not the fastest way to invert matrices, but it is surely the easiest to
understand and construct. In solving a problem numerically there is often a choice, as
here, between a more or less direct transcription of an analytic method, and a less
traditional iterative method. An iterative approach frequently results in a program
which is easier to understand, is shorter, and is more flexible, even if it performs
somewhat slower.

Four examples of iteration in accelerator dynamics are studied in detail
below. The first three show how iterations of the simplest maps reproduce most of
the significant nonlinear behavior in real accelerators. Each of these examples can be
easily reproduced by the reader, at the minimal cost of writing only 20 or 40 lines of
code. The fourth example outlines a general way to iteratively solve nonlinear
difference equations, analytically or numerically.

The standard map

How significant are the differences between the dynamics of discrete and
continuous systems - between analogous representations of the pendulum, for
example? The continuous motion of a pendulum of unit length is described by

8" = -—gsin(®) (4)

where O is the angle from the vertical, g is the acceleration due to gravity, and the
prime denotes differentiation with respect to time. Note that the unit of time may be
adjusted to make g =1, a condition which is assumed from here on. The map which
is the discrete analog of the pendulum system has received so much attention, and
occurs in so many contexts, that it has come to be called the 'standard’ map[7].



until bored {
9 0 + At @ (5)
' = 6 - Atsin(0)

}

Here At is a finite time step.

It has already been remarked that equation (5), with a suitable coordinate
transformation, describes the relative longitudinal motion of a particle in a storage ring
with one short radio frequency cavity. In the limit of small amplitude oscillations the
motion is written as

9 = 06g cos(2nQqp n) (6)

where n is the iteration or tum number, and Qg is the linear 'tune’. The longitudinal
'synchrotron’ tune in real accelerators varies from about 0.005 in proton storage rings

to about 0.1 in electron rings. Comparing equations (5) and (6) in the low amplitude
limit gives

2
cos(2rnQq) = 1 - -%t-- (1)

showing that even small amplitude motion is unstable if At> 2.

Equation (4) is formally solved by associating canonical coordinates q and
with 6 and @', respectively, and finding a Hamiltonian

H = 52 - cos(@ (®)
so that
dg _ dJH
dt ~— op 9)
dp _ oH
dt -~ “oq

Since H 1is an explicitly conserved quantity, trajectories follow contours of the
Hamiltonian function (8), as drawn in figure 1la. The rate of progress along a contour
depends only on the local slope of the function. It takes an infinite amount of time to
move once around the separatrix, since the slope is zero at the 'unstable fixed points'
where the pendulum is inverted and motionless.



The fundamental difference between the systems described by expressions
(4) and (5) is that the restoring force is time independent in the first 'autonomous'
case, and time dependent in the second. This is illustrated by rewriting the standard
map as a differential equation

8" = —38(T-nAt) g At sin(6) (10}

where the delta function is non zero every At units of time. It is rigorously true for an
autonomous system that two neighboring trajectories which start infinitesimally close
together diverge from each other Iinearly in time. Non-autonomous systems show
both linear and exponential divergence.

A trajectory responding to the standard map can behave quite differently
from its continuous cousin, depending on its initial coordinates and on At (or Qg), the
only control parameter. A trivial difference is that only discrete values of time exist,
so it is only possible to plot one phase space point per iteration of the map, on a
'Poincare surface of section'. If enough of these dots are drawn, they often appear to
form a continuous line, a 'KAM surface’, looking quite like the contours of the
continuous Hamiltonian[7-10]. This is shown for the case with Qg = 0.06 in figure
1b. If two neighboring trajectories are both 'regular’ in this sense, then they diverge
linearly with time, just as in the continuous case.

In contrast, some trajectories are 'chaotic’, with dots which appear to be
scattered randomly within regions of phase space that are bounded by KAM surfaces.
To be more formal, neighboring regular trajectories diverge linearly with time, while
neighboring chaotic trajectories diverge exponentially. Chaotic regions are found
everywhere In phase space, associated with resonant trajectories whose perturbed
tunes are rational fractions. (A general definition of tune, valid for nonlinear motion, is
"the average ratio of phase space turns to map turns”.) Just as irrational numbers fit
into a number line which is dense in rational fractions, so also regular trajectories
commingle with chaotic phase space regions. Fortunately, the size of the chaotic
regions shrinks rapidly with the rational fraction denominator - the 'order’ of the
associated resonance.

Chaos is most apparent in figures 1c and 1d near the (now nonexistent)
separatrix, where the tune approaches zero, a first order resonance. Figure 1
demonstrates a general feature of nonlinear systems - that the situation is more stable
if the nonlinear force is more continuous. For example, the radio frequency system in
a collider should be broken up into several cavities when the synchrotron tune is large.
Electron colliders like LEP need high power radio frequency systems. While this
requirement drives the synchrotron tune to relatively vulnerable high values, it also



causes the many meters of radio frequency cavities to be well distributed.
Longitudinal chaos is seldom a problem in practice. As a second example, the
maximum ‘space charge’ tune shift, due to the continuous interactions of a particle
with the electromagnetic fields of its own bunch, can be as high as about 0.25 before
beam losses and emittance blow up become significant. However, the 'beam-beam’
tune shift, due to occasional localized interactions with a counter rotating bunch, may
only be as high as about 0.005 .

So, to answer the original question, there can be dramatic differences
between analogous discrete and continuous physical systems, of which the numerical
modeler must beware. On the one hand, large time steps must be avoided while
modeling a gravity pendulum. On the other hand, continuous models of longitudinal
motion in an accelerator are inherently flawed.

The Henon map

Although the experimental, theoretical, and numerical study of chaos started
to explode about two decades ago, this was not because the phenomenon was a new
discovery - Poincare mentioned the topic in the late 19th century[11]. The explosion
occurred because of, and hand in hand with, the availability of relatively powerful
computers. Henon, an astrophysicist, was one of the first to investigate nonlinear
maps numerically{12]. He found that the map which now bears his name

X
(x') = 1initial values

until bored { (11)

X cos(2nQq) sin(2rQq) X
( '] —sm(2rQq) cos(2nQ) ( )

X = x + x2

}

"exhibits all the typical properties of more complicated mappings and dynamical
systems". This map is directly relevant to accelerator physics, as it describes the
horizontal betatron motion of a particle circulating a storage ring, of linear tune Qq,
which contains a single sextupole of unit strength. In this case the prime denotes
differentiation with respect to the azimuthal coordinate, so that x' is the angle that a
trajectory makes relative to the nominal closed orbit.



Typical results from Henon are shown in figure 2, where the motion of
several trajectories with different initial conditions have been followed for four values
of Qq, the control parameter. Four kinds of trajectories can be loosely distinguished,
corresponding to behavior which is observed - and avoided or exploited - in
accelerators.

A Regular non-resonant trajectories. At low amplitudes, near the origin of each
figure, the motion is regular, and the trajectories form roughly circular continuous lines.
Given enough time, a particle in this region will come arbitrarily close to any given
phase angle. Under normal stable accelerator operation the beam fills a region around
the origin with an area proportional to its emittance.

B Regular resonant trajectories. The noncircular distortions increase as the
amplitude gets larger, until the motion breaks up into a chain of resonance islands. A
trajectory launched in the middle of one of the five islands in figure 2c, for example,
skips successively from island to island. Although this motion is still regular, some
phase angles are inaccessible - the motion is phase locked, or resonant. The islands in
figures 2c¢ and 2d are all quite similar to one another. If one of them is replotted in
polar rather than cartesian coordinates, and is then isolated from its companions, the
resemblance to the standard map structure in figure 1 is striking.

C Rapidly divergent regular trajectories. Three arms of widely spaced dots are
visible in figure 2a, corresponding to a trajectory whose amplitude increases rapidly
from turn to turn. One way to extract particles from an accelerator is to gradually
move the linear tune closer to 1/3, so that the stable area in figure la shrinks,
squeezing particles out onto such divergent trajectories. Once the particles have
crossed a septum, they are steered into an external beam line. Strictly speaking, this
motion is no different from type A behavior, since the trajectories are regular. After
reaching very large amplitudes they eventually retumn close to their initial conditions.

D Chaotic trajectories. Some of the trajectories at the largest amplitudes in
figures 2b, 2¢c and 2d appear to be randomly placed dots, following no obvious pattern.
These trajectories usually diverge very rapidly, but may be confined to a bounded
region of phase space. (Some chaotic points have been removed from figure 2a for
the sake of clarity.)

Phase space plots can also be produced from real accelerators, by kicking
the beam with a pulsed magnet to induce oscillations, and then recording the turn-by-
turn displacement of the beam in two neighboring beam position monitors. These
techniques are still under development, but it is already clear that the perturbed tune
and the noncircular distortion, or 'smear’, can be accurately measured. The major



difficulty in making these measurements is due to the finite size of the beam, which is
usually not negligible compared to the size of the features being investigated.
Nonlinearities cause the tune to vary with amplitude, so that there is a tune spread
across the distribution of the beam, causing larger amplitude particles in the kicked
beam to rotate faster (say) in phase space than low amplitude particles. The beam
filaments into a hollow shell, and the center of charge signal picked up by the position
monitors decoheres. However, if some of the beam is kicked into a resonant island, a
fraction of the signal is phase locked, and does not decohere. The frequency of this
persistent signal identifies the resonance, while the amplitude of the signal offers a
direct measurement of the resonance strength.

Suppose that the linear tune is close to 1/3, as in figure 2a, so that

8q = Qp - (12)

W —

is a small parameter, and so that the net movement of the trajectory after three
iterations is relatively small. Then it can be shown, with a little algebra, that the three
turn motion is approximated by a new map([13]

oH3

A = =7 (13)
. BH3
AX = =57

through the introduction of a 'discrete Hamiltonian' Hjy

3
Hy = 3 2r&q -12-(x2+x'2) ~ §- g x + s x)3
k=1
ck = cos(k 27/3) s = sin(k 21/3) (14)

Here € is the strength of the sextupole, which has so far been set equal to one. The
value of H3 is explicitly preserved under its continuous application as a Hamiltonian,
so Hjy is often called the ‘resonant invariant'. It is not fully invariant under iterations
of either the Henon map, or the approximate map in expression (13) .

When the contours of Hj are plotted for the case shown in figure la, the
small amplitude behavior is accurately reproduced - the triangular structure has about
the right size, the arms point in the right directions, and the rate of escape of divergent
particles is well estimated. The large amplitude structure, however, is incorrect - the



outlying islands are totally absent, and divergent trajectories do not return, but
continue off to infinity. If the tune is shifted to the conditions shown in figure 24, then it
is the six turn motion which is small, and an Hg discrete Hamiltonian must be
constructed. In principle it is possible to do this analytically, but in practice it is very
tedious and unenlightening, since the lowest order nonlinear term is cubic in €, the
sextupole strength. And, to quote Taf, "Beyond first order results I know of no useful
result from perturbation theory in celestial mechanics... "[14]. Analytic Hamiltonian
theory is only useful in the case of the Henon map when the amplitudes are small or
moderate, and the tune is close to 1/3 .

A discrete Hamiltonian can also be constructed empirically, even when the
one turn map contains many nonlinearities, by fitting data produced by a tracking
program[15]. This 'empirical Hamiltonian' may then be used to speed up tracking
significantly, making long term tracking studies possible for contemporary accelerators
which contain thousands of nonlinear elements. It can also be used as the basis for
further theoretical investigations.

The round beam-beam map, and tune modulation

The task of accurate dynamic aperture determination has probably been the
most intensely studied nonlinear problem in accelerator physics. The only plausible
contender for this title is the beam-beam interaction, an effect which limits the useful
luminosity performance of almost all electron and proton storage rings. When a test
particle in (say) an antiproton bunch passes through the macroscopic electromagnetic
field of a counter-rotating proton bunch, it receives a transverse beam-beam impulse
which modifies its angle. If the opposing beam has a round gaussian transverse
profile, and if the vertical displacement of the test particle is zero, then the horizontal
angular kick is

EL i RaS

x2
Ax' = —4ng 1-eC737 (15)
where the unit of distance in these normalized coordinates is the beam size, and where
& is the beam-beam tune shift parameter. In an accelerator with an unperturbed
linear tune of Qp, and a single such interaction per turn, the perturbed tune becomes
Qq + § in the zero amplitude limit, but remains Qg in the large amplitude limit.

The lifetime of the beam decreases dramatically if the tune shift parameter
becomes too large - if there is an attempt to store too much charge in the opposing
bunches. For example, § must be held to less than about 0.004 in the CERN Super
Proton Synchrotron (SPS) storage ring. The simplest numerical model of the beam-



beam interaction replaces the x2 term in the Henon map (11), with the Ax' kick in
(15). This model fails, however, because £ has to be increased to 0.1 or so before
severe trajectory distortions and chaos are seen[16,17].

The model is significantly improved by including tune modulation in the
map[18-21]. For example,

n =4
until bored {
n = n+l
Q = QO + q sin(2n Qm n) (16)
X cos(2rQ}) sin(2nQ) X
(x'] - [—-sin(Z‘n:Q) cos(2nQ) ](x)
X = x - 4n§§ [1—e(—x72)]

if Qpn = integer, plot (x,x") in polar coordinates

}

One source of tune modulation is ripple in the current supplied to some of the guide
field magnets. A more fundamental source is the tune variation with energy that
occurs when the net chromaticity is not exactly zero. In this case the modulation tune
Qmq is the synchrotron tune Qg, about 0.005 in the SPS, and the modulation
amplitude q is typically 0.001 or larger.

Figure 3 follows several trajectories through the map (16) for 2000
modulation periods of exactly 194 turns, plotting the phase space location once per
period in polar coordinates of transverse amplitude and phase. The modulation period
1s chosen to be an integer so that the plot is not blurred in the phase coordinate. The
tune shift parameter & is 0.0042 in the two top figures, 3a and 3b, while it is 0.006
in the two bottom figures. There is no tune modulation, q = 0, in the two left hand
figures, while q = 0.001 in the two right hand figures. In all cases the unperturbed
linear tune is Qp = 0.331.

Several important properties of the beam-beam interaction are visible. There
is no sign of a beam-beam dynamic aperture in the absence of tune modulation. There
are no rapidly divergent trajectories, as there are under the Henon map in figure 2,
because the beam-beam angular kick decreases with increasing displacement, while
the sextupole kick increases with displacement. The electromagnetic field source is
localized inside the vacuum chamber in the beam-beam case, but is outside in the
sextupole case.
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The tune of a resonance must be within the range Qp to Qg +& in order
for its island chain to appear. A sixth order resonance, 2/6, is the lowest order
resonance to satisfy this condition in figure 3 - the 1/3 resonance is excluded because
the nonlinear kick is an odd function of x, exciting only even order resonances. The
central amplitude a, of the island chain is determined by the condition that

Qap = Qo +EUG) = 7 an

where U is a known universal function with U(0) = 1, which asymptotically
approaches zero as the amplitude goes to infinity. The location of the island chain
changes between figures 3a and 3c because the tune shift parameters are different.

The amplitude width of an unmodulated resonance island chain is determined
by a competition between the "strength” of the resonance and the local slope of tune
with amplitude. Both of these quantities are proportional to the tune shift parameter,
so the island width (at constant central amplitude) is independent of &, except at very
large values. If the linear tune in 3¢ is lowered to about 0.330, the central amplitude
is restored from about 2.75 to about 1.95, and figures 3a and 3¢ become essentially
indistinguishable. This is why the simple beam-beam model without tune modulation
fails.

Synchrobetatron sidebands are visible in figures 3b and 3d as extra chains of
islands, separated in tune from the fundamental by k Qp,/6, where k is an integer.
They appear when tune modulation is introduced, and have significant strength over a
tune range of about * q around the fundamental. Their central amplitudes are found
by solving equation (17) with the resonance tune 2/6 replaced by 2/6 +k Qp,/6 .

The sidebands extend over an amplitude range which is skewed towards
larger amplitudes, because the slope of tune with amplitude decreases with increasing
amplitude. While the tune separation of neighboring sidebands is constant, their
amplitude separation varies inversely with the slope of the tune, and hence with the
tune shift parameter. The 40% increase of & in going from 3b to 3d is sufficient to
bring the sideband islands close enough together to overlap and partially destroy each
other, surrounding themselves with a sea of chaos. Trajectories in figure 3d with an
initial amplitude of 2 reach an amplitude of 6, and beyond, in a few hundred
synchrotron oscillations. In a real storage ring this corresponds to 2 sigma particles
being lost in a few seconds, rather than being stored for several hours.

It is somewhat fortuitous that this model reproduces approximately the
correct critical tune shift parameter for the SPS. A more realistic model would include
the more stringent need to survive several collisions per tum, and the less stringent
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need to avoid only resonances as strong as about tenth order - as well as including
vertical motion. Unlike the Henon sextupole problem, the beam-beam problem is well
described in an analytically tractable Hamiltonian (resonant invariant) form. This is
because the beam-beam kick (15) is not a low order monomial in x, but is a
polynomial of infinite order, so that any given resonance is driven to first order in &,
the strength parameter. Numerical modeling, analytic theory, and practical experience

agree quite well in predicting and measuring the critical tune shift parameter in proton
storage rings{20,21].

The beam-beam interaction behaves somewhat differently for electron
storage rings, where synchrotron radiation in the plane of the dipole bends is
important. Quantum emission excites the transverse motion almost entirely in the
horizontal plane (assuming the ring is flat), while indirectly damping the motion in both
planes, resulting in an equilibrium beam shape which is quite flat. As already noted,
the synchrotron tune in electron colliders is about an order of magnitude larger than in
proton colliders. The end result of modifying the beam-beam equations of motion to
include transverse damping and diffusion, flat beams, a larger synchrotron frequency,
and other related effects, is to raise the critical beam-beam tune shift parameter to
between 0.02 and 0.05, depending on the machine under consideration[22-25].

Iterative solutions to nonlinear maps

When the phase space motion of a trajectory under the influence of a
nonlinear map is regular and nonresonant, the motion is conveniently described by a
series expansion in harmonics of the fundamental tune. A general method exists for
determining the coefficients of this series, without having to resort to

tracking[13,24,26]. Consider again one dimensional motion in an accelerator with a
single nonlinearity,

o0
Ax = f(x) = Y byp,q x 2Pl (18)
p=0

where it is assumed for the sake of definiteness and simplicity that the function f(x) is

a polynomial in odd powers of x, as with the round beam-beam kick described in
(15).

The equation of motion is conveniently written as a single second order
difference equation

12



Xn+1 — 2CoXp + xp1 = fxp)
Co = cos(2n Qp) (19)

Here Qg is the tune of an unperturbed trajectory, whose displacement on turn n is
taken to be

Xp = a1 cos(2n Qg n) (20)

by a judicious choice of initial phase. Equation (19) is modified, for reasons which will
become apparent below, by adding a term linear in x;, to both sides, so that

Xge] ~ 2Cxq + Xqo = fxy) + 2(Co-C) xg
C = cos(2x Q) (21)

The first iteration loop begins by substituting (20) into (18), and expanding f(x,) as a
series in harmonics of the tune, ready for substitution into the right hand side of
equation (21).

The general iteration loop begins by substituting the generalization of (20),

M
Xp = Z am cos(2rm Q n) (22)
m=0

which is necessarily truncated after a finite number of terms M, into (18), to give

P M
f(xn) = 3, baps1 [ D am cos2mm Qn) ] 20+ (23)
p=0 m=0

This expression may be reduced by using the identities

p
p+liay = L 2 (2p+1)! _2K0)A
CosTPTHA) = 35 2 aprigl oS ERHITEOA)

cos(A) cos(B) = [ cos(A+B) + cos(A-B) ] (24)
to generate a purely cosine series

13



M
f(xy) = 2 Cm ¢cos(Zxm Q n) (25)
m=0

which is also truncated after M terms. The net result so far is to generate a new set
of "drive” coefficients ¢, from an old set of "response” coefficients a, .

The iterative loop is closed by equating the left and right sides of (21), to
generate a new set of response coefficients ap, from the new drive coefficients

°m

5+ 2(Cy - O gm(old)

aminew) = A Q) — cos(2r Q) (26)

There is a strong response at the frequency mQ if the corresponding denominator on
the right of (26) 1s small, that is, if the resonance condition

Q = @I @7

is approached. The additional term on both sides of equation (21) is needed because
the denominator always vanishes for m = 1, and the only way to ensure that aj
remains finite - constant at its unperturbed value - is by adjusting C = cos(21 Q) so
that '

cos(2r Q) = cos(2nx Q) + Z‘% (28)

This manoeuvre amounts to adjusting the perturbed tune to remove secular terms.

In simple situations it is possible to get interesting results from this method
using only a pencil and paper - for example, the octupolar tune shift due to a single
sextupole is easily obtained. As the mappings get more complicated, like the round
beam-beam kick, for example, and as greater accuracy is called for, more powerful
tools must be used. Analytic results for the coefficients of the series, which in general
will contain both sine and cosine terms, are reliably obtained by using an algebraic
manipulation package. Even so, the analytic expressions get to be quite opaque when
several iterations are necessary.

The most difficult procedure in the solution is the analytic expansion of f(xp),
from the double sum in (23) to the series in (25) . This can be avoided by using
equation (23) directly to generate a time sequence of f(x,) data, for n=1, 2... M,
which is then simply Fourier analyzed. The disadvantage is that the coefficients are

14



then known only numerically, and not analytically. A double Fourier analysis,
necessary for the two dimensional flat beam-beam problem, has been successfully
carried out in this way, and shows good agreement with tracking and with electron
storage ring behavior{24].

The method fails to find a convergent series for chaotic trajectories, which
are aperiodic and have broad noisy spectra. It also fails for rapidly divergent
trajectories. More disturbing, however, is its failure on regular resonant trajectories,
at least in the simple form presented here. The method is nonetheless useful in many
practical situations.

Conclusion

Computers play an essential role in the study and practice of accelerator
physics. Contemporary accelerators are so complex, and respond over such a wide
range of time scales, that they would be impossible to operate without control
computers. Lattice design and tracking programs must be used for small synchrotron
light rings and for huge proton colliders alike, in order to arrange the linear optics, and
to calculdte how badly the inevitable optical nonlinearities affect trajectory dynamics.
Modeling software is used to set hardware and software specifications for an
accelerator before construction, and to empirically describe it, and tune it, after
construction. Finite element codes are used to solve Maxwells equations in
electromagnets, permanent magnets, radio frequency cavities, and vacuum chamber
bellows.

The level of intelligence of accelerator software varies enormously. For
example, control system software is used, in order of increasing intelligence, to turn
things on and off, to accumulate and analyze large amounts of data, and to invoke an
empirical model to retune the accelerator. Accelerator physicists and applied
mathematicians disagree amongst themselves about how much intelligence numerical
models of physical systems contain, and about how much intellectual respect they
deserve. Common skeptical complaints include that

- it is hard to construct code guaranteed to be 'bug free’

- computers are just powerful calculators, producing mere numbers as output

- numerical models offer no new insight into physical processes
Despite the coming of age of computer science as an intellectual discipline, numerical
techniques are sometimes felt to not be bona fide mathematical tools, on a par with
analytic manipulations.
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The first of these complaints is true, and too weakly stated - it is practically
impossible to guarantee any code as bug free. However, it is also true that human
conceptual and typographical errors enter analytical expressions written on paper.
Crises of confidence, whether analytical or numerical, can be alleviated by running
test cases with known results through a model, or by reproducing the same result in
two independent ways. Even after the most careful checking, problems often appear
when an old model is used for a new purpose - bugs are never eliminated completely,
they just get harder to find.

It is not true that computers only manipulate numbers. Symbolic algebra
packages like MACSYMA and REDUCE, for example, have been used to find
otherwise undetected errors in analytic expressions in hand compiled tables of
integrals. Relational databases and languages like LISP and PROLOG understand and
manipulate the relations and hierarchies natural to almost all logical and data
structures. It is true, though, that most every day numerical techniques lose the formal
properties of the objects they manipulate. For example, the strength of a beam-beam
resonance involves the integral of a reduced Bessel function. In order to understand
how the strength varies with resonance order and trajectory amplitude, it is useful to
know the recursion relations between reduced Bessel functions, and to know their
asymptotic behavior. All the computer knows (unless a symbolic algebra package is
being used) is how to evaluate the functions and their definite integrals.

It is unequivocally clear that computer graphics have provided a powerful
new insight into physical processes, as demonstrated by the central role that figures
have played above. To continue the resonance strength example further, a single
graph showing the resonance strengths for several different resonance orders, as a
function of particle amplitude, provides a detailed description of the situation. Whether

or not such a graphical solution answers practical accelerator questions depends on
the details of those questions.

Different tools are useful in different situations. Arguments about the
propriety of numerical techniques are rather fatuous when these techniques solve
physical problems which would otherwise have to be ignored. It is more productive to
speculate on what new techniques the future will bring.
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Figure 1.  Standard map trajectories, with different time steps and linear tunes,

a)
b)

c)

d)

At and Qg . The separatrix only strictly exists in the continuous case, a).

Contours of the Hamiltonian, H = 1/2 "2 — cos(8) [that is, Qp, At—0].

Qg = 0.06 . Essentially indistinguishable from a), with no sign of chaos, even
close to the 'separatrix’.

Qg = 0.12 . A narrow chaotic region appears near the 'separatrix’, and some
island structure appears.

Qg =0.18 . A large fraction of phase space is chaotic, surrounding complex
island structures.
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Figure 2. Trajectories obtained by Henon[12] from iterating his map with different

a)

b)

¢)
d)

linear tunes Qqp . When Qg = 1/M, M resonance islands appear.

Qp =0.324, close to 1/3. The stable triangle and the divergent arms are well
described by simple Hamiltonian theory, but the outlying islands are not.

Qp =0.2516, close to 1/4 . Four big islands, with Qg very close to resonance.

Qg =0.211, close to 1/5 . Five islands, surrounded by a stable KAM surface.

Qo =0.185, close to 1/6 . The islands are almost rotationally symmetric - they
resemble each other and the standard map structure.
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Figure 3. Phase space structure due to a map with one round beam-beam kick of
strength &, and tune modulation of amplitude q. One phase space point is plotted for
each modulation period of 194 turns, corresponding to typical proton collider
synchrotron tunes of Qg = 0.005 . The two left figures have no tune modulation, while
the two right figures have q = 0.001 . The two top figures have a weaker value of
£ =0.0042, while the two bottom figures have a stronger value of & = 0.006 .
Sidebands are visible when the tune modulation is on. They overlap and are partially
submerged in a chaotic sea in d).
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